On Extending RuleML for Modal Defeasible Logic

Duy Hoang Pham1,2, Guido Governatori1, Simon Raboczi2, Andrew Newman2 and Subhasis Thakur1,2

\textit{NICTA}

\textit{University of Queensland}

Orlando, 31 October 2008
What is a rule?

A rule is a binary relationship between a set of 'expressions' and an 'expression'.

What's the strength of the relationship?

What's the type of the relationship?
What is a rule?

A rule is a binary relationship between a set of ‘expressions’ and an ‘expression’
A rule is a binary relationship between a set of ‘expressions’ and an ‘expression’

What’s the strength of the relationship?

What’s the type of the relationship?
A rule is a binary relationship between a set of ‘expressions’ and an ‘expression’

What’s the strength of the relationship?

What’s the type of the relationship?
Guido gives a talk on Friday 31 October at 9:15am
BEL Guido gives a talk on Friday 31 October at 9:15am
INT Guido gives a talk on Friday 31 October at 9:15am
Modal Logic

OBL Guido gives a talk on Friday 31 October at 9:15am
Guido gives a talk on Friday 31 October at 9:15am

Normal Modal Logic

1. propositional logic

2. $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$

3. $\vdash A / \vdash \Box A$ or $A \vdash B / \Box A \vdash \Box B$

4. $\Box A \rightarrow A$ ($\Box A \vdash A$)

5. $\Box A \rightarrow \neg \neg \neg A$ ($\Box A \vdash \neg \neg \neg A$)

6. $\Box A \rightarrow \Box \Box A$ ($\Box A \vdash \Box \Box A$)

7. $\Box A \rightarrow \neg \neg \neg \neg A$ ($\Box A \vdash \neg \neg \neg \neg A$)
Modal Logic

Guido gives a talk on Friday 31 October at 9:15am

Normal Modal Logic

1. propositional logic
2. $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
3. $\vdash A/\vdash \Box A$ or $A \vdash B/\Box A \vdash \Box B$
4. $\Box A \rightarrow A (\Box A \vdash A)$
5. $\Box A \rightarrow \neg \Box \neg A (\Box A \vdash \neg \Box \neg A)$
6. $\Box A \rightarrow \Box \Box A (\Box A \vdash \Box \Box A)$
7. $\Box A \rightarrow \neg \Box \neg \Box A (\Box A \vdash \neg \Box \neg \Box A)$

- $1 + 2 + 3 = \text{Logical omniscience (and expected side-effects)}$
- $1 = \text{monotonic}$
Being Lazy

Factual omniscience and (non-)monotonic reasoning

PhD → Uni
Weekend → ¬ Uni
PublicHoliday → ¬ Uni
Sick → ¬ Uni
Weekend ∧ VICdeadline → Uni
VICdeadline ∧ PartnerBirthday → ¬ Uni
Phd ∧ (¬ Weekend ∨ (Weekend ∧ VICdeadline ∧ ¬ PartnerBirthday)) ∧ ¬ Sick → Uni

VIC = Very Important Conference
Factual omniscience and (non-)monotonic reasoning

\[\text{PhD} \rightarrow \text{Uni} \]
Factual omniscience and (non-)monotonic reasoning

\[\text{PhD} \rightarrow \text{Uni} \]
\[\text{Weekend} \rightarrow \neg \text{Uni} \]
\[\text{PublicHoliday} \rightarrow \neg \text{Uni} \]
\[\text{Sick} \rightarrow \neg \text{Uni} \]
Factual omniscience and (non-)monotonic reasoning

\[\text{PhD} \rightarrow \text{Uni} \]
\[\text{Weekend} \rightarrow \neg \text{Uni} \]
\[\text{PublicHoliday} \rightarrow \neg \text{Uni} \]
\[\text{Sick} \rightarrow \neg \text{Uni} \]
\[\text{Weekend} \land \text{VICdeadline} \rightarrow \text{Uni} \]
Factual omniscience and (non-)monotonic reasoning

\[\text{PhD} \rightarrow \text{Uni} \]
\[\text{Weekend} \rightarrow \neg \text{Uni} \]
\[\text{PublicHoliday} \rightarrow \neg \text{Uni} \]
\[\text{Sick} \rightarrow \neg \text{Uni} \]
\[\text{Weekend} \land \text{VICdeadline} \rightarrow \text{Uni} \]

VIC = Very Important Conference
Factual omniscience and (non-)monotonic reasoning

\[\text{PhD} \rightarrow \text{Uni} \]
\[\text{Weekend} \rightarrow \neg \text{Uni} \]
\[\text{PublicHoliday} \rightarrow \neg \text{Uni} \]
\[\text{Sick} \rightarrow \neg \text{Uni} \]
\[\text{Weekend} \land \text{VICdeadline} \rightarrow \text{Uni} \]
\[\text{VICdeadline} \land \text{PartnerBirthday} \rightarrow \neg \text{Uni} \]
Factual omniscience and (non-)monotonic reasoning

\[PhD \rightarrow Uni \]
\[Weekend \rightarrow \neg Uni \]
\[PublicHoliday \rightarrow \neg Uni \]
\[Sick \rightarrow \neg Uni \]
\[Weekend \land VIC\text{deadline} \rightarrow Uni \]
\[VIC\text{deadline} \land PartnerBirthday \rightarrow \neg Uni \]

\[Phd \land (\neg Weekend \lor (Weekend \land VIC\text{deadline} \land \neg PartnerBirthday)) \land \neg Sick \ldots \rightarrow Uni \]
Why Defeasible Logic?

Rule-based non-monotonic formalism
- Flexible
- Efficient (linear complexity)
- Directly skeptic semantics
- Argumentation semantics
- Constrictive proof theory
- Optimised/efficient implementations (1000000 rules)
- Extensible

© NICTA 2008
Why Defeasible Logic?

Rule-based non-monotonic formalism

- Flexible
- Efficient (linear complexity)
- Directly skeptic semantics
- Argumentation semantics
- Constructive proof theory
- Optimised/efficient implementations (1000000 rules)
- Extensible
Defeasible Logic: Strength of Conclusions

- Derive (plausible) conclusions with the minimum amount of information.
 - Definite conclusions
 - Defeasible conclusions

- Defeasible Theory
 - Facts
 - Strict rules ($A \rightarrow B$)
 - Defeasible rules ($A \Rightarrow B$)
 - Defeaters ($A \sim B$)
 - Superiority relation over rules
A proof is a finite sequence $P = (P(1), \ldots, P(n))$ of tagged literals satisfying four conditions.
A proof is a finite sequence $P = (P(1), \ldots, P(n))$ of tagged literals satisfying four conditions

- $+\Delta q$, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules);
Conclusions in Defeasible Logic

A proof is a finite sequence $P = (P(1), \ldots, P(n))$ of tagged literals satisfying four conditions

- $+\Delta q$, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules);
- $-\Delta q$, which is intended to mean that we have proved that q is not definitely provable in D;
A proof is a finite sequence $P = (P(1), \ldots, P(n))$ of tagged literals satisfying four conditions

- $+\Delta q$, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules);
- $-\Delta q$, which is intended to mean that we have proved that q is not definitely provable in D;
- $+\partial q$, which is intended to mean that q is defeasibly provable in D;
- $-\partial q$, which is intended to mean that we have proved that q is not defeasibly provable in D.
Conclusions in Defeasible Logic

A proof is a finite sequence $P = (P(1), \ldots, P(n))$ of tagged literals satisfying four conditions

- $+\Delta q$, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules);
- $-\Delta q$, which is intended to mean that we have proved that q is not definitely provable in D;
- $+\partial q$, which is intended to mean that q is defeasibly provable in D;
- $-\partial q$ which is intended to mean that we have proved that q is not defeasibly provable in D.
Give an argument for the conclusion you want to prove
1. Give an argument for the conclusion you want to prove
2. Consider all possible counterarguments to it
1. Give an argument for the conclusion you want to prove
2. Consider all possible counterarguments to it
3. Rebut all counterarguments
Proving Conclusions in Defeasible Logic

1. Give an argument for the conclusion you want to prove
2. Consider all possible counterarguments to it
3. Rebut all counterarguments
 - Defeat the argument by a stronger one
 - Undercut the argument by showing that some of the premises do not hold
Example

Facts: A_1, A_2, B_1, B_2

Rules:
$r_1: A_1 \Rightarrow C$
$r_2: A_2 \Rightarrow C$
$r_3: B_1 \Rightarrow \neg C$
$r_4: B_2 \Rightarrow \neg C$
$r_5: B_3 \Rightarrow \neg C$

Superiority relation:
$r_1 > r_3$
$r_2 > r_4$
$r_5 > r_1$
Example

Facts: A_1, A_2, B_1, B_2

Rules:
- $r_1: A_1 \Rightarrow C$
- $r_2: A_2 \Rightarrow C$
- $r_3: B_1 \Rightarrow \neg C$
- $r_4: B_2 \Rightarrow \neg C$
- $r_5: B_3 \Rightarrow \neg C$

Superiority relation:
- $r_1 > r_3$
- $r_2 > r_4$
- $r_5 > r_1$

Phase 1: Argument for C
Example

Facts: \(A_1, A_2, B_1, B_2 \)

Rules:
- \(r_1: A_1 \Rightarrow C \)
- \(r_2: A_2 \Rightarrow C \)
- \(r_3: B_1 \Rightarrow \neg C \)
- \(r_4: B_2 \Rightarrow \neg C \)
- \(r_5: B_3 \Rightarrow \neg C \)

Superiority relation:
- \(r_1 > r_3 \)
- \(r_2 > r_4 \)
- \(r_5 > r_1 \)

Phase 1: Argument for \(C \)
- \(A_1 \) (Fact), \(r_1: A_1 \Rightarrow C \)
Example

Facts: A_1, A_2, B_1, B_2

Rules:
- $r_1: A_1 \Rightarrow C$
- $r_2: A_2 \Rightarrow C$
- $r_3: B_1 \Rightarrow \neg C$
- $r_4: B_2 \Rightarrow \neg C$
- $r_5: B_3 \Rightarrow \neg C$

Superiority relation:
- $r_1 > r_3$
- $r_2 > r_4$
- $r_5 > r_1$

Phase 1: Argument for C
A_1 (Fact), $r_1: A_1 \Rightarrow C$

Phase 2: Possible counterarguments

Phase 3: Rebut the counterarguments
r_3 weaker than r_1
r_4 weaker than r_2
r_5 is not applicable
Example

Facts: A_1, A_2, B_1, B_2

Rules:

1. $r_1 : A_1 \Rightarrow C$
2. $r_2 : A_2 \Rightarrow C$
3. $r_3 : B_1 \Rightarrow \neg C$
4. $r_4 : B_2 \Rightarrow \neg C$
5. $r_5 : B_3 \Rightarrow \neg C$

Superiority relation:

1. $r_1 > r_3$
2. $r_2 > r_4$
3. $r_5 > r_1$

Phase 1: Argument for C

A_1 (Fact), $r_1 : A_1 \Rightarrow C$

Phase 2: Possible counterarguments

$r_3 : B_1 \Rightarrow \neg C$

$r_4 : B_2 \Rightarrow \neg C$

$r_5 : B_3 \Rightarrow \neg C$

Phase 3: Rebut the counterarguments

r_3 weaker than r_1

r_4 weaker than r_2

r_5 is not applicable
Example

Facts: A_1, A_2, B_1, B_2

Rules: $r_1: A_1 \Rightarrow C$
$r_2: A_2 \Rightarrow C$
$r_3: B_1 \Rightarrow \neg C$
$r_4: B_2 \Rightarrow \neg C$
$r_5: B_3 \Rightarrow \neg C$

Superiority relation:

$r_1 > r_3$
$r_2 > r_4$
$r_5 > r_1$

Phase 1: Argument for C
A_1 (Fact), $r_1: A_1 \Rightarrow C$

Phase 2: Possible counterarguments
$r_3: B_1 \Rightarrow \neg C$
$r_4: B_2 \Rightarrow \neg C$
$r_5: B_3 \Rightarrow \neg C$

Phase 3: Rebut the counterarguments
Example

Facts: A_1, A_2, B_1, B_2

Rules:
- $r_1 : A_1 \Rightarrow C$
- $r_2 : A_2 \Rightarrow C$
- $r_3 : B_1 \Rightarrow \neg C$
- $r_4 : B_2 \Rightarrow \neg C$
- $r_5 : B_3 \Rightarrow \neg C$

Superiority relation:
- $r_1 > r_3$
- $r_2 > r_4$
- $r_5 > r_1$

Phase 1: Argument for C
- A_1 (Fact), $r_1 : A_1 \Rightarrow C$

Phase 2: Possible counterarguments
- $r_3 : B_1 \Rightarrow \neg C$
- $r_4 : B_2 \Rightarrow \neg C$
- $r_5 : B_3 \Rightarrow \neg C$

Phase 3: Rebut the counterarguments
- r_3 weaker than r_1
- r_4 weaker than r_2
- r_5 is not applicable
1. The strength describes how strong is the relationships between the antecedent and the consequent of a rule.

2. The mode qualifies the conclusion of a rule.
Modal Defeasible Logic: Mode and Strength

1. The strength describes how strong is the relationships between the antecedent and the consequent of a rule.
 - \(A_1, \ldots, A_n \rightarrow B \) (\(B \) is an indisputable consequence of \(A_1, \ldots, A_n \))
 - \(A_1, \ldots, A_n \Rightarrow B \) (normally \(B \) if \(A_1, \ldots, A_n \))

2. The mode qualifies the conclusion of a rule.
1. The strength describes how strong is the relationships between the antecedent and the consequent of a rule.
 - $A_1, \ldots, A_n \rightarrow B$ (B is an indisputable consequence of A_1, \ldots, A_n)
 - $A_1, \ldots, A_n \Rightarrow B$ (normally B if A_1, \ldots, A_n)

2. The mode qualifies the conclusion of a rule.
 - $A_1, \ldots, A_n \Rightarrow_{BEL} B$ (an agent forms the belief B when A_1, \ldots, A_n are the case)
The strength describes how strong is the relationships between the antecedent and the consequent of a rule.

1. \(A_1, \ldots, A_n \rightarrow B \) (\(B \) is an indisputable consequence of \(A_1, \ldots, A_n \))
2. \(A_1, \ldots, A_n \Rightarrow B \) (normally \(B \) if \(A_1, \ldots, A_n \))

The mode qualifies the conclusion of a rule.

3. \(A_1, \ldots, A_n \Rightarrow_{BEL} B \) (an agent forms the belief \(B \) when \(A_1, \ldots, A_n \) are the case)
4. \(A_1, \ldots, A_n \Rightarrow_{INT} B \) (an agent has the intention \(B \) when \(A_1, \ldots, A_n \) are the case)
The strength describes how strong is the relationships between the antecedent and the consequent of a rule.

- \(A_1, \ldots, A_n \rightarrow B \) (\(B \) is an indisputable consequence of \(A_1, \ldots, A_n \))
- \(A_1, \ldots, A_n \Rightarrow B \) (normally \(B \) if \(A_1, \ldots, A_n \))

The mode qualifies the conclusion of a rule.

- \(A_1, \ldots, A_n \Rightarrow_{BEL} B \) (an agent forms the belief \(B \) when \(A_1, \ldots, A_n \) are the case)
- \(A_1, \ldots, A_n \Rightarrow_{INT} B \) (an agent has the intention \(B \) when \(A_1, \ldots, A_n \) are the case)
- \(A_1, \ldots, A_n \Rightarrow_{OBL} B \) (an agent has the obligation \(B \) when \(A_1, \ldots, A_n \) are the case)
Conclusions in Basic Modal Defeasible Logic

- $\Delta^{\square_i} q$, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules of mode \square_i);
- $-\Delta^{\square_i} q$, which is intended to mean that we have proved that q is not definitely provable in D;
- $\partial^{\square_i} q$, which is intended to mean that q is defeasibly provable in D using rules of mode \square_i;
- $-\partial^{\square_i} q$ which is intended to mean that we have proved that q is not defeasibly provable in D using rules of mode \square_i.
Conclusions in Basic Modal Defeasible Logic

- $+\Delta_{\square_i}q$, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules of mode \square_i);
- $-\Delta_{\square_i}q$, which is intended to mean that we have proved that q is not definitely provable in D;
- $+\partial_{\square_i}q$, which is intended to mean that q is defeasibly provable in D using rules of mode \square_i;
- $-\partial_{\square_i}q$ which is intended to mean that we have proved that q is not defeasibly provable in D using rules of mode \square_i.

We obtain \square_ip iff $+\partial_{\square_i}p$.
Recipe for Modal Defeasible Logics

Choose the appropriate modalities

Create a defeasible consequence relation for each modality

Identify relationships between modalities:

- Inclusion: $\phi \rightarrow_2 \psi$
- Conflicts: $\phi_2 \rightarrow \neg \phi_2 \rightarrow \bot$
- Conversions from one modality to another modality:

 $A_1, \ldots, A_n \Rightarrow_2 \psi_1, \ldots, \psi_2 \psi_1, \ldots, \psi_n \vdash_2 \psi_2$
Recipe for Modal Defeasible Logics

- Choose the appropriate modalities

\[\phi \rightarrow \neg \phi \Rightarrow \bot \]
Recipe for Modal Defeasible Logics

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality

Put in a mixer and shake well!
Recipe for Modal Defeasible Logics

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality
- Identify relationships between modalities:
Recipe for Modal Defeasible Logics

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality
- Identify relationships between modalities:
 - inclusion

\[\square_1 \phi \rightarrow \square_2 \phi \]
Recipe for Modal Defeasible Logics

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality
- Identify relationships between modalities:
 - inclusion
 \[\Box_1 \phi \rightarrow \Box_2 \phi \]
 - conflicts
 \[\Box_1 \phi, \Box_2 \neg \phi \rightarrow \bot \]
Recipe for Modal Defeasible Logics

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality
- Identify relationships between modalities:
 - inclusion
 \[\Box_1 \phi \rightarrow \Box_2 \phi \]
 - conflicts
 \[\Box_1 \phi , \Box_2 \neg \phi \rightarrow \bot \]
 - conversions from one modality to another modality
 \[
 \begin{align*}
 A_1, \ldots, A_n \Rightarrow & \Box_1 B \\
 \hline
 \Box_2 A_1, \ldots, \Box_2 A_n \vdash & \Box_2 B
 \end{align*}
 \]
Recipe for Modal Defeasible Logics

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality
- Identify relationships between modalities:
 - inclusion
 \[\Box_1 \phi \to \Box_2 \phi \]
 - conflicts
 \[\Box_1 \phi, \Box_2 \neg \phi \to \bot \]
 - conversions from one modality to another modality
 \[
 \frac{A_1, \ldots, A_n \Rightarrow \Box_1 B}{\Box_2 A_1, \ldots, \Box_2 A_n \vdash \Box_2 B}
 \]

- Put in a mixer and shake well!
Proofs for Modal Defeasible Logic

Inclusion $\Box_1 \rightarrow \Box_2$

1. Give an argument for the conclusion you want to prove using rules for either \Box_1 or \Box_2
2. Consider all possible counterarguments to it
3. Rebut all counterarguments
 - Defeat the argument by a stronger one (same as 1)
 - Undercut the argument by showing that some of the premises do not hold
Conflict $\square_1 \rightarrow \neg \square_2 \neg$

1. Give an argument for the conclusion you want to prove
2. Consider all possible counterarguments to it using rules for both \square_1 and \square_2
3. Rebut all counterarguments
 - Defeat the argument by a stronger one
 - Undercut the argument by showing that some of the premises do not hold
Conversion \square_1 to \square_2

1. Give an argument for the conclusion you want to prove using rules for either \square_2 or rules of mode \square_1 so that all premises are provable with mode \square_2.

2. Consider all possible counterarguments to it.

3. Rebut all counterarguments.
 - Defeat the argument by a stronger one (same as 1).
 - Undercut the argument by showing that some of the premises do not hold (for rules of mode \square_1 show that the premises are not provable with mode \square_2).
Social Agent

<?xml version="1.0" encoding="UTF-8"?>
<ModeSet xmlns="http://www.example.org/modeset-ns"
 xmlns:ruleml="http://www.ruleml.org/0.91/xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.org/xsd/ruleset.xsd" >
 <Mode id="BEL1" href="http://www.example.org/mode/belief" >
 <ruleml:Ind>agent1</ruleml:Ind>
 </Mode>
 <Mode id="OBL" href="http://www.example.org/mode/obligation"/>
 <Mode id="INT1" href="http://www.example.org/mode/intention" >
 <ruleml:Ind>agent1</ruleml:Ind>
 </Mode>
 <Conflict between="OBL INT1"/>
 <Conversion from="BEL1" to="INT1"/>
 <Conversion from="BEL1" to="OBL"/>
</ModeSet>

Choose the appropriate modalities
Create a defeasible consequence relation for each modality
Identify relationships between modalities:
 - inclusion
 - conflicts
 - conversions from one modality to another modality
Put in a mixer and shake well!
Implementation

- Apply transformation to remove defeaters
- Apply transformation to remove superiority relation
- Scan the set of rules for rules with empty body
- Take the consequent of rules with empty body and check whether there are no rules for its opposite. If so the consequent is provable
 - remove provable consequents from the body of rules
 - remove rules where the negation of provable consequents are in the body
- Scan the list of literals for literal not appearing as consequent of rules. The literal is non provable
- remove rules with non provable literals
- repeat
Why Modal Defeasible Logic

- Modelling and monitoring contracts (and norms)
- Modelling BIOlogical agents
- Compliance of business processes
- Modelling workflows
- Extended with time (instant, intervals, duration and periodicity)
- Modelling norm dynamics
Why Modal Defeasible Logic

- Modelling and monitoring contracts (and norms)
- Modelling BIO logical agents (BDI − D + O)
- Compliance of business processes
- Modelling workflows
- Extended with time (instant, intervals, duration and periodicity)
- Modelling norm dynamics
</talk>